Date: Tuesday Feb. 1, 2022 at 4pm
Location: HBH 227 + online
Abstract
Using high-energy nucleus-nucleus collisions, physicists are able to study the trillion-degree soup of quarks and gluons that existed in the very early universe. This strongly-interacting matter, known as the quark-gluon plasma, exhibits unique properties including the suppression of high-momentum particle production and behavior as a ‘nearly-perfect’ fluid. Surprisingly, some of these signals have also been observed in smaller systems, such as proton-proton collisions, prompting questions about the minimum conditions needed to observe such phenomena. I will describe my experimental efforts to clarify this issue using recent lead-lead collision data from the CMS detector at the LHC, as well as archived data from previous particle colliders. In addition, I will discuss exciting opportunities for the future at both the LHC and RHIC, which will usher in a new era of understanding regarding strongly interacting matter.